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Abstract 
The influence of the crystal shape on the fine structure 
of transmission electron diffraction (TED) patterns 
described by the crystal shape amplitude is discussed. 
A general algebraic expression for the crystal shape 
amplitude of any crystal polyhedron is used for com- 
puting the intensity distribution of TED reflections. 
The computer simulation method is applied to the 
analysis of the fine structure of TED patterns of small 
gold and palladium crystals having octahedral and 
tetrahedral habits. 

I. Introduction 
In electron diffraction of small crystals spots are 
frequently observed which have distinct fine structure 
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consisting of streaks, satellites or elongations. The 
shape of any diffraction spot is mainly determined 
by the shape of the crystal as well as by the presence 
of crystal defects. The contribution of the crystal 
shape to the fine structure of the reflections can be 
described within the framework of the kinematical 
diffraction theory. The intensity distribution around 
each reciprocal-lattice point g is then given by 

lhk,(p) = IFhk,121S(p)l ~ (1) 

where, for the lattice point g, Fhk ! is the structure 
amplitude and S is the shape amplitude, which is the 
same around every reflection. In electron diffraction 
the kinematical approximation usually fails and the 
exact calculation of the scattered intensities requires 
a dynamical treatment. A dynamical theory of the 
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electron diffraction from a wedge-shape crystal was 
given by Kato (1952) and Moli~re & Niehrs (1954). 
Detailed theoretical investigations of the fine struc- 
ture of the spots due to double refraction effects were 
carried out by Cowley, Goodman & Rees (1957) and 
further by Moli~re & Wagenfeld (1958) and 
Lehmpfuhl & Reissland (1968). [For reviews, see for 
instance Cowley (1982), Kambe & Moli~re (1970), 
Raether (1957)]. It is worth noting, however, that 
knowledge of the kinematic crystal shape amplitude 
S is useful and is a good approximation for charac- 
terizing the influence of the crystal shape on the 
intensity distribution of the reflections. 

The general concept of the shape amplitude was 
introduced by von Laue (1936) and later treated by 
Patterson (1939) and Ewald (1940). Handbooks and 
textbooks of structure analysis, electron diffraction 
and electron microscopy present schematic drawings 
of the shape amplitudes of crystals in the form of 
needles, spheres, ellipsoids etc. Only a few books 
provide some hints on calculating the shape ampli- 
tude in the general case (e.g. von Laue, 1948, James, 
1967; Hosemann & Bagchi, 1962). 

General algebraic expressions were derived by 
Komrska (1988) which enable numerical evaluation 
of the shape amplitude of any crystal polyhedron. In 
this paper the computer simulation of the crystal 
shape factor of any crystal polyhedron is described 
by a method using the formulae of Komrska (1988). 
The computer simulation procedure is applied to the 
interpretation of the shape of transmission electron 
diffraction spots from small polyhedral gold crystals 
and palladium particles. The fine structure of the 
experimental diffraction spots may be compared with 
that of 'simulated spots' obtained from the two- 
dimensional intensity distribution at plane intersec- 
tions with the corresponding shape amplitudes. The 
numerical results are presented in the form of so- 
called crystal shape factor maps representing both 
central and off-centre cross sections through the shape 
factor IS(p)l  2 by planes perpendicular to the incident 
electron beam (calculated for the actual crystal 
orientation). 

2. Algebraic formulae for the crystal shape amplitude 
of a crystal polyhedron 

The crystal shape amplitude is the Fourier transform 
of the crystal shape function (Ewald, 1940). The shape 
function of the crystal is defined by 

{10 i f ~ c V  
s(~)= if ~ V, (2) 

V being the volume of the crystal. The shape ampli- 
tude is then given by 

S(p) = ~ exp (-2~rip.~) d3~. (3) 
V 

The integral (3) can always be expressed in an 
algebraic way, if the crystal shape has the form of a 
polyhedron. Generally, the use of the so-called Abbe 
transform (e.g. Komrska, 1982) enables the volume 
integral S(p) to be converted into a surface integral, 
and correspondingly the surface integral to be conver- 
ted into a line integral along the polygonal boundaries 
of the faces. The systematic investigations of the 
various possibilities of expressing the crystal shape 
factor algebraically for any crystal polyhedron have 
yielded several formally different formulae, where the 
shape amplitude is expressed by sums over faces and 
edges, over faces and vertices, over edges and faces 
etc. (Komrska, 1988). These expressions are not 
equally suitable for numerical calculations as they 
involve more or fewer terms, some of which are 
singular for particular directions of the variable p. 
The most suitable formula for numerical calculations 
is that summing the contributions of the crystal faces 
to the shape amplitude in the following form: 

p. N/  1 ~ p2_ 
S ( p ) -  (2,rrp)2 y=, (p.Nj)2 

Ej 

× L, ep.ttye × Ny) 
e = l  

sin ( Trp.tjeLfe) ~ 
× exp (-27rip. c,,.~), 

 p.tseLje 
p~ +pNr, (4) 

where F is the number of crystal faces, E r is the 
number of edges of the f th crystal face, N r is the unit 
outward normal to the f th face, Lye is the length of 
the eth edge of the f th  face, tj~ is the unit vector in 
the direction of the eth edge o f the f th  face, and ~c,,.) 
is the position vector of the midpoint Cje of the eth 
edge of the f th face. The vectors tie are oriented 
counterclockwise if viewed in the opposite direction 
to the outward face normal Nj. 

From (4) it becomes evident that if Po is perpen- 
dicular to a face fo, i.e. ifpo = +poNj0, the correspond- 
ing term in the sum is singular, because p~-  
(po.Nro)2=o. If the crystal possesses Fo such 
(mutually parallel) faces, the crystal shape amplitude 
must be evaluated from the expression 

/ ' o  

i2  E po.NfoProeXp(-27ripo.Nfodfo) 
S(p,,) - 2 rrpo So= l 

1 v Po. Nj-o 
(2~po)2 y-~_ ~ p2 - (po.Ny) 2 

EI sin (¢rpo.tyeLje) 
× E Lf~po.(tfe ×Nf) 

e = I ¢rpo. tfeLfe 

x exp (-21ripo.~%)), Po =+poNyo, (5) 

where Pyo is the area of the face, and dyo is the distance 
of the foth face from the origin. 
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The shape amplitude of a crystal with a centre of 
symmetry is a real function and the terms of the sums 
in (4) and (5) are reduced by a half. For instance, 
(5) is then given by 

S(po)= 1 ~-,- Pfosin (2"rrpodfo) 
7rpo fo=l 

1 F/2 N/o. Nf 

27r2p 2 f~a 1- (N/o .Nf)  2 
f # f o  

E: sin (7rpo.tfeLfe) 
× E LfeNfo.(tfe×Nf) 

e =  l ¢rpo. t f~Lfe 

x cos (2¢rpoNfo. ~(c:,)), Po = +poNyo. 
(6) 

The main advantage of (4) is that singularities occur 
only if the reciprocal vector p is perpendicular to a 
face and that for these directions (5) is to be applied, 
the numerical evaluation of which follows the same 
scheme. The formulae (4) and (5) can be used for 
the numerical evaluation of the crystal shape ampli- 
tude of any crystal polyhedron, if the crystal is 
specified by the above mentioned quantities. 

3. Calculation procedure 

In order to interpret the shape of transmission elec- 
tron diffraction spots of small polyhedral crystals, 
computer programs were written which enabled the 
calculation and graphical representation of any 
desired section and projection through the three- 
dimensional crystal shape factor IS(p)[ 2 of any crystal 
polyhedron. The calculation procedure of IS(p)12= 
S(p)S*(p) (the asterisk denotes the complex conju- 
gate expression) is carried out using the algebraic 
expressions (5) and (6). The procedure applied is 
advantageous, as the fixed set of quantities describing 
the geometry of a given polyhedron comprises the 
input data for all calculations of the shape factor of 
this polyhedron for any orientation. The orientation 
relationships are specified by transformation 
matrices. In the programs the parameter p is replaced 
by x = 2zrap, where a is chosen to be a suitable length. 
For Platonic bodies, for instance, a is the length of 
the edge of the circumscribed cube (cf. Figs. 1, 3, 5, 
7). Thus, the calculations are carried out within the 
dimensionless boundaries of ti (i = 1, 2, 3). The calcu- 
lated intensity distribution IS(p)l 2 of a projection for 
a given polyhedron can then easily be assigned to 
any crystal size of this kind of polyhedron. To display 
the calculated results, a special half-tone overprinting 
routine is used involving a logarithmic gray scale with 
12 gray levels and a special contrast scaling factor, 
yielding a contrast from white to black for direct 
comparison with experimental diffraction patterns. 

The programs were written in Fortran 77 and the 
different versions were run on an SM4 computer 

based on the RSX system as well as on an ICL 
computer 

The algorithm and the programs were tested with 
the use of the following general properties of the 
shape amplitude: 

(i) 
m a x  IS(p)12 = s Z ( o ) =  v z, (7) 

where V is the volume of the crystal. In the programs 
the intensity values are normalized by 1/V 2. 

(ii) The shape amplitude S(p) has all the symmetry 
elements of the shape function s(~) of the crystal. 

(iii) 
S(p) = S*(-p) .  (8) 

For the intensity this becomes 

IS(p)12 = IS ( -p ) l  2 . (9) 

To illustrate the computational method, the cross 
sections of the shape factor for a regular pentagonal 
dodecahedron in (0r l )  orientation, i.e. parallel to a 
fivefold axis, are shown in Fig. 1. This example of 
the calculated fine structure of a diffraction spot 
caused by the crystal shape might be useful for inter- 
pretation of diffraction patterns of small quasi-crys- 
tals, where a pentagonal dodecahedral shape is poss- 
ible. The input data necessary for the calculation of 
S(p) describing the geometry of the pentagonal 
dodecahedron are given in Table 1. The central cross 
section of the shape factor clearly shows the tenfold 

Fig. 1. Crystal shape factor map for a regular pentagonal 
dodecahedron in (0rl) orientation; (a) orientation relationship 
of pentagonal dodecahedron in circumscribed cube, (b) thick- 
ness isolines of pentagonal dodecahedron in (0~'1) orientation 
in units of a, (c) cross sections of shape factors ]SI2; xl: +60, 
x 2 : +60, x3 : 0-30. 
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Table 1. Data for calculating the shape amplitude of a pentagonal dodecahedron 

f Nf % 
1 A ( i +  rk) ~-(-2j) 

2 A(-i+rk) ~-(2j) 

A(zj+k) ~(ri+~j-k) 3 
i . 1. 4 A(-rj+ k) ~(-rl--~j-k) 

5 A(~'i+j) ~-(-2k) 

A( ri -j) 
A = (.r2 + l )-l/2; 
d / =  a / [ 2  - ~ / 5 ( ~ / 5  - 1 ) ] , / 2 ;  

(%) 

(2k) 

(2k) 

(2i) 

(2i) 

ti~ % ¼ 

~(-; i+j-rk) ~( -2 i )  ~(-! i-j+~.k) 

t(-i+ cj-~k) -~(-~i+j+rk) I(! i-j+rk) 

L = a/7 "E = a ( 2 -  r ) ;  V =  a a ( ~ r -  2) ;  Pc = 5 ( 4 -  "r2)-l/Ea2/4~'3 ~- 0 . 2 5 1 0  a2 ;  

, -=(1+,/5)/2 

4\~'a-(li-j+k) 4a(~'i-; ̀+k) ,~\~(ri+lj+k)r / 4a(; i+`+l"k) 

4( -i-rj+lk)" 4 ( - 2 ` ,  a(i-rj+lk)4\ r 4a(~ i-j+Tk) 

4,a--(ri+lj-k~r / -4a( i+rj-l-k)r ,~ka(i+rj+lk)r / 4a( ¢i+l̀+k)r 

a(~'i-lj+k~4\ 7" ,I 4a( i-T`+lk 4\a-(i-7"j+lk)¢ ,I 4a( ~'i-l`-k 
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l f5 

~(-¢i+~j+k) 

Table 2. Correspondence between the x3, st3 parameters, and the tilt angle e 

Crystal Lo¢t ~ 650  ]k a ~ 920 A Loc , ~ 700 A a ~ 990/~ ,  

Ix31 1¢'31--" IP~l( A - ~  ) le l (° )  I ';'.~ I = I P 3 1 ( A - ' )  ) 4 ( ° )  

2 3 .46x  10 -4 0"04 3 .22x  I0-4 0.02 
5 8"65 x 10 -4 0.1 8 .04x  10 -4 0.06 

10 1.73x 10 -3 0"2 1"61 x 10 -3 0"1 
15 2 .60x  10 -3 0"3 2.41 × 10 -3 0"2 
20 3.46 x 10 -3 0"4 3"22 x 10-3 0'3 
30 5"19x 10 -3 0"6 4 .82x  l0 -3 0 '4  

Bragg condition g[200] g[220] 
I~,:1 = 4.47 x 10 -3 0.52 1~[ = 8.93 x 10 -3 0.74 

~et - 750/~ ,  a - 530 

I~'~l ~ IP~I(A-') I~l(°) 
6"01 x 10 -4 0"04 
1.50x 10 .3 0"1 
3"00 x 10 -3 0"2 
4 .50x  10 -3 0'3 
6"01 x 10 -3 0"5 
9"01 x l0 -3 0"7 

g[220] 
I~l = 1"02 x 10 .2 0"78 

symmetry corresponding to the fivefold axis of s(~). 
The off-centre cross sections obviously exhibit the 
loss of the centrosymmetry which leads to the fivefold 
symmetrical cross section. The different x3 values can 
be assigned to the corresponding st3 components of 
the actual deviation parameter ~ of a diffraction spot 
from the Ewald sphere for any given size of the 
pentagonal dodecahedron. 

4. Applications 

The structure and habit of small gold crystals (ao = 
4.07 A) and of palladium particles (ao=3.809 A) 
were investigated by various transmission electron 

microscope imaging techniques and by transmission 
electron diffraction (Hofmeister, Haefke & Krohn, 
1982). The metal particles grown by vapour deposi- 
tion onto ionic crystal substrates (Au/AgBr; Pd/KI) 
exhibit a clearly distinguishable polyhedral shape of 
mainly octahedral habit. For palladium particles a 
tetrahedral shape was observed, too. By illuminating 
the specimens by a highly collimated electron beam 
very sharp diffraction patterns of the particles in 
various orientations could be obtained. The shape of 
the spots is characteristic of the particle orientation. 
The fine structure of the diffraction spots was com- 
pared with calculated maps presenting both central 
and off-centre cross sections through the shape factor 
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IS(p)l 2 by planes perpendicular  to the electron beam. 
The correspondence between the x3 value of  the shape 
factor maps  and the ~3 values for the actual crystal 
size as well as the related tilt angles lel =lKI/g are 
given in Table 2. The selected area electron diffraction 
pattern (SAED) of the octahedral  gold particle in 
(001) orientat ion is given in Fig. 2(a).  The details of  
the fine structure of two different 200 reflections are 
clearly d isplayed in Figs. 2(b) and 2(c), respectively. 
The computer-s imulated shape factor map  of an 

(a) 

octahedron in (001) orientat ion (Fig. 3) demonstrates  
the change of the intensity distr ibution related to the 
various off-centre sections. The intensity distr ibution 
of the reflections of  the diffraction pattern exhibits a 
slight deviat ion from the exact (001) orientation. The 
main  features of the fine structure of  the 200 reflec- 
tions can be correlated with the calculated cross sec- 
tion images ranging from x3 = 15 to x3 = 30. The actual 
size of the gold crystal de termined from a TEM bright- 
field image was 650/~. For this size the x3 values from 
15 to 30 correspond to a misorientat ion of  0.1-0.2 ° 
from the exact (001) orientation. 

The SAED pattern as well as the fine structure of 
two different 220 reflections of an octahedral  gold 
crystal (Loct = 700/~k) in (111) orientation are shown 
in Fig. 4. The corresponding crystal shape factor map  
for this orientat ion is given in Fig. 5. If  the experi- 
mental  parameters  [crystal size, slight tilt away from 
the exact (111) orientation] are taken into consider- 
ation, the fine structure of  the 220 reflections should 
be correlated with s imulated cross sections ranging 
from x3 = 15 to x3 = 30, which corresponds to a tilt of  
0.2-0.5 ° away from the symmetrical  excitation 
(1C22o1 = 8.93 x 10 -3 /~- l ) .  

An example  of  the fine structure of 220 reflections 
of the small  pa l l ad ium crystal of  tetrahedral  shape in 
(111) orientat ion is given in Fig. 6. The compar ison  
of  the fine structure of  the two 220 reflections with 
the calculated cross sections of the shape factor map  
(Fig. 7) reveals a relatively good correlation with the 

:' ~ i~Ni!~ i$i$i.'$i i$1::~ii~i[iii$iiii$iiii$!~iiiHiili~ 

:~  _ ( ~ ~  iitlli iitt il iiiii!~ ~i!ili;i::ig ,it!~!~ii~ir!!i':2:;::iiiiiiiliiilii 
li.~ilil~]iUllii~iiai:.i~: i!i i:: ::!~ii r~,:~iiiiiii~i!$iiii 

~!!!!liiiii!!iii~::! :=, ,~ !:.:i=i~i~iiii!!!!!!iU!!!i 
: : : : , : : : : : , : : =  , :  : : :  : : : : :  

(b) 

(c) 

Fig. 2. Electron diffraction of an octahedral gold crystal in (001) 
orientation; (a) SAED pattern, (b), (c) fine structure of 200 
reflections. 

Fig. 3. Crystal shape factor map for an octahedron in (001) orienta- 
tion; (a) orientation relationship of octahedron in circumscribed 
cube, (b) thickness isolines of octahedron in (001) orientation 
given in units of a, (c) cross sections of shape factors ISI 2, 
x I : +60, x 2 : +60. x 3 ." 0-30. 
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sections ranging from x 3 = 10 to x 3 = 20. This range 
corresponds to a deviat ion of  0.1-0.4 ° from the exact 
Bragg condition. 

5. Discussion 

Our results indicate that the method of  computer  
s imulat ion of  the crystal shape factor can be used, in 
principle,  for the interpretat ion of  the shape and 
symmetry of  diffraction spots of  small polyhedra l  
crystals. The m a x i m u m  thickness t of  the gold and 

(a) 

pa l lad ium crystals investigated (particle I Au: t(ool)~" 
920, t(~ll)-- 530 A;  particle II Au: t ~ l ~ - 5 7 0 A ;  
Pd: t ~ 6 1 0 A )  lies in the dynamical  range. The 
dynamical  scattering leads to alterations in the 
intensity of  the reflections and in the intensity distri- 
but ion of the fine structure of a single reflection as 
can be clearly seen in the experimental  electron 
diffraction patterns. However, the fine structure of  all 
diffraction spots considered exhibits symmetry 
relat ionships which are consistent with the symmetry  
of the calculated cross sections of the shape factor 
maps. Thus, the influence of the ' dynamic  shape 
transform'  (Cowley, G o o d m a n  & Rees, 1957) is not 
very obvious in the experiments  described. We there- 
fore reach the conclusion that the method described 
can be appl ied  general ly to the interpretat ion of the 
main  features of the fine structure of electron diffrac- 
tion spots from small  polyhedra l  crystals as a good 
approximat ion.  In describing the possibili t ies of  
obtaining a better correlation between the observed 
intensity distr ibution of  the the diffraction spots and 
the s imulated ones, the following aspects have to be 
taken into consideration: 

The small  crystals investigated very often exhibit  
addi t ional  morphological  features (e.g. facets) creat- 
ing addi t ional  streaks and satellites as a mixture of  
the polyhedral  faces and the surface topography.  The 
change of  the fine structure of  the diffraction spots 
of  an octahedral  crystal as a function of the degree 
of t runcations at the vertices of the octahedron was 

(b) 

(c). 

Fig. 4. Electron diffraction of an octahedral gold crystal in (111) 
orientation; (a) SAED pattern, (b), (c) fine structure of 220 
reflections. 

Fig. 5. Crystal shape factor map for an octahedron in (111) orienta- 
tion; (a) orientation relationship of octahedron in circumscribed 
cube, (b) thickness isolines of octahedron in (111) orientation 
given in units of a, (c) cross sections of shape factors ISIS; 
x~ : +60, x2 : +60, x 3 "- 0-30. 
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investigated by Hofmeister, Neumann & Komrska 
(1986). The influence of the surface morphology (ter- 
races, facets, etc.) can also be included in the simula- 
tion method. 

With regard to the experimental conditions, the 
observed intensity distribution of the diffraction pat- 
terns is strongly influenced by the finite source size 
(beam divergence) and by a limited resolution of 
photographic plates. In the computer programs a 
special contrast parameter controls the sensitivity of 
the contrast (optical density range) which can be 

adapted to the experimental parameters. The com- 
puter simulation experiments were carried out with 
such a contrast scaling parameter which reveals the 
details of the function IS(p)l 2 with sufficient reso- 
lution. The photographically recorded diffraction 
spots represent a much more limited range of 
intensities where the fine structure of the reflections 
is not displayed with sufficiently different gray 
shadows. 

The finite source size, i.e. the beam divergence, 
causes a spread oT the intensity. To take this effect 
into consideration we should have to convolute the 
crystal shape factor with the so-called source function 
determined by the divergence parameter of the elec- 
tron microscope used (Cowley, 1982). 

ta) 

(b) 

6. Concluding remarks 

It has been shown that the computer simulation of 
the crystal shape factor is helpful for the interpreta- 
tion of the shape and symmetry of transmission elec- 
tron diffraction reflections from small polyhedral 
crystals. A series of diffraction patterns taken at well 
defined experimental conditions (e.g. highly coherent 
illumination, adjusted tilt experiments, specified film 
parameters) will provide the necessary intensity data 
for a qualitative analysis. Using the image matching 
technique (experiments-computer simulated TED 
patterns) one can gain information on the structure 
and shape of small crystals. The computer simulation 

(c) 

Fig. 6. Electron diffraction of a tetrahedral palladium crystal in 
(111) orientation; (a) SAED pattern, (b), (c) fine structure of 
220 reflections. 

_ :_--- . . . . .  : : :  

, r , ~  

...... 15 .' 

. . . . . . . . . . . . . . . . .  :;~ i i i  

Fig. 7. Crystal shape factor map for a tetrahedron in (111) orienta- 
tion; (a) orientation relationship of tetrahedron in circumscribed 
cube, (b) thickness isolines of tetrahedron in (111) orientation 
given-in units of a, (c) cross sections of shape factors ISl 2, 
x~ : ±60, x2 : ~60, x3 : 0-30. 
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of the crystal shape factor seems also to be appropri- 
ate for the analysis of the fine structure of the diffrac- 
tion spots of multiply twinned particles. Calculations 
to explain the results of experimental investigations 
of multiply twinned gold particles (Hofmeister, 1984) 
are in preparation. 

The authors are grateful to Professor A. Delong 
and Professor V. Schmidt for continuing interest and 
suggestions promoting this cooperative work. They 
are especially indebted to Dr R. Hillebrand for per- 
mission to use his overprinting subroutine as part of 
our computer programs. Thanks are also due to Mrs 
KolaHkovd for her assistance in preparing the type- 
script. 
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Abstract 
X-ray scattering measurements have been made in 
situ on highly oriented pyrolytic graphite intercalated 
with FeC13 to stage 4 in a sealed glass tube at 620 K. 
It has been found that the FeCI3 is in a two- 
dimensional liquid state at this temperature and that 
the stacking of the sets of ordered graphite layers 
(ABAB) that bound the intercalant is nearly random. 
Through a novel modeling of L scans for 10.L, 11.L, 
20.L, 21.L, 30.L and 22.L, a good fit has been achieved 
by using 60% of a preferred (A-A) stacking of sets 
with a broad lateral distribution about the ordered 
position. The remaining 40% of the sets are stacked 
with complete translational randomness, without 
regard to the normal graphite crystallography. This 
sliding randomness remains compatible with 
Daumas-Herold domain formation. 
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I. Introduction 
A variety of structural behavior appears in graphite 
intercalation compounds (GIC's) depending criti- 
cally on the molecular nature of the species interca- 
lated within the graphite host. With the acceptor 
compounds, there are often rather complex sequences 
of ordering reactions involving transitions from liquid 
to incommensurate solid to commensurate solid 
(Dresselhaus & Dresselhaus, 1981; Solin, 1982; 
Moret, 1986). In the case of FeC13, beginning with 
the early electron diffraction study by Cowley & Ibers 
(1956), there has been extensive structural charac- 
terization, mainly by Metz and co-workers (Hohlwein 
& Metz, 1974; Metz & Schulze, 1975; Metz & 
Hohlwein, 1975). A major feature of these photo- 
graphic studies, common to all the GIC's, has been 
the occurrence of well defined stages in which, for 
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