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Abstract

The influence of the crystal shape on the fine structure
of transmission electron diffraction (TED) patterns
described by the crystal shape amplitude is discussed.
A general algebraic expression for the crystal shape
amplitude of any crystal polyhedron is used for com-
puting the intensity distribution of TED reflections.
The computer simulation method is applied to the
analysis of the fine structure of TED patterns of small
gold and palladium crystals having octahedral and
tetrahedral habits.

1. Introduction

In electron diffraction of small crystals spots are
frequently observed which have distinct fine structure
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consisting of streaks, satellites or elongations. The
shape of any diffraction spot is mainly determined
by the shape of the crystal as well as by the presence
of crystal defects. The contribution of the crystal
shape to the fine structure of the reflections can be
described within the framework of the kinematical
diffraction theory. The intensity distribution around
each reciprocal-lattice point g is then given by

L(p) =|Fhkl|2|S(p)|2 (1)

where, for the lattice point g, F,4 is the structure
amplitude and S is the shape amplitude, which is the
same around every reflection. In electron diffraction
the kinematical approximation usually fails and the
exact calculation of the scattered intensities requires
a dynamical treatment. A dynamical theory of the
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electron diffraction from a wedge-shape crystal was
given by Kato (1952) and Moliére & Niehrs (1954).
Detailed theoretical investigations of the fine struc-
ture of the spots due to double refraction effects were
carried out by Cowley, Goodman & Rees (1957) and
further by Moliére & Wagenfeld (1958) and
Lehmpfuhl & Reissland (1968). [For reviews, see for
instance Cowley (1982), Kambe & Moliére (1970),
Raether (1957)]. It is worth noting, however, that
knowledge of the kinematic crystal shape amplitude
S is useful and is a good approximation for charac-
terizing the influence of the crystal shape on the
intensity distribution of the reflections.

The general concept of the shape amplitude was
introduced by von Laue (1936) and later treated by
Patterson (1939) and Ewald (1940). Handbooks and
textbooks of structure analysis, electron diffraction
and electron microscopy present schematic drawings
of the shape amplitudes of crystals in the form of
needles, spheres, ellipsoids etc. Only a few books
provide some hints on calculating the shape ampli-
tude in the general case (e.g. von Laue, 1948, James,
1967; Hosemann & Bagchi, 1962).

General algebraic expressions were derived by
Komrska (1988) which enable numerical evaluation
of the shape amplitude of any crystal polyhedron. In
this paper the computer simulation of the crystal
shape factor of any crystal polyhedron is described
by a method using the formulae of Komrska (1988).
The computer simulation procedure is applied to the
interpretation of the shape of transmission electron
diffraction spots from small polyhedral gold crystals
and palladium particles. The fine structure of the
experimental diffraction spots may be compared with
that of ‘simulated spots’ obtained from the two-
dimensional intensity distribution at plane intersec-
tions with the corresponding shape amplitudes. The
numerical results are presented in the form of so-
called crystal shape factor maps representing both
central and off-centre cross sections through the shape
factor |S(p)| by planes perpendicular to the incident
electron beam (calculated for the actual crystal
orientation).

2. Algebraic formulae for the crystal shape amplitude
of a crystal polyhedron

The crystal shape amplitude is the Fourier transform
of the crystal shape function (Ewald, 1940). The shape
function of the crystal is defined by

1 ifgev
“9_{0 ifEe v,

V being the volume of the crystal. The shape ampli-
tude is then given by

S(p) =‘I/CXP (=2mip.§) I’ (3)

(2)
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The integral (3) can always be expressed in an
algebraic way, if the crystal shape has the form of a
polyhedron. Generally, the use of the so-called Abbe
transform (e.g. Komrska, 1982) enables the volume
integral S(p) to be converted into a surface integral,
and correspondingly the surface integral to be conver-
ted into a line integral along the polygonal boundaries
of the faces. The systematic investigations of the
various possibilities of expressing the crystal shape
factor algebraically for any crystal polyhedron have
yielded several formally different formulae, where the
shape amplitude is expressed by sums over faces and
edges, over faces and vertices, over edges and faces
etc. (Komrska, 1988). These expressions are not
equally suitable for numerical calculations as they
involve more or fewer terms, some of which are
singular for particular directions of the variable p.
The most suitable formula for numerical calculations
is that summing the contributions of the crystal faces
to the shape amplitude in the following form:

1 F
S(p)=-
®) (2wp)2f; p'=(p.Ny)

P-N,

E

J
X Z‘I Lfep'(tfe X Nf)

in (7p.t,L, ‘
x—_sm(ﬂp S f)exp(—21-rip.§“f«-’),

p# £pN,, (4)

where F is the number of crystal faces, E; is the
number of edges of the fth crystal face, N, is the unit
outward normal to the fth face, L, is the length of
the eth edge of the fth face, t, is the unit vector in
the direction of the eth edge of the fth face, and &'+’
is the position vector of the midpoint C,, of the eth
edge of the fth face. The vectors t, are oriented
counterclockwise if viewed in the opposite direction
to the outward face normal N,.

From (4) it becomes evident that if p, is perpen-
dicularto a face fq, i.e.if p, = +poN,, the correspond-
ing term in the sum is singular, because pi—
(Po-Ny)>=0. If the crystal possesses F, such
(mutually parallel) faces, the crystal shape amplitude
must be evaluated from the expression

mPp. tfeLfe

. F,
i .
S(py) = 217'p(2) fZ.l Po-NyoPyo €Xp (_27T1P0-andfo)

Po-Nyo

CQ2mpo) 2 P~ (pooNy)?
E

1
X Z,] Ly.po.(tr XNy)

sin (ﬂpo.tfeLfe)
TPo-treLse
Po==xpoNso, (5)

where Py is the area of the face, and d is the distance
of the fyth face from the origin.

X exp (—2'n-ip0.§(cf*)),
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The shape amplitude of a crystal with a centre of
symmetry is a real function and the terms of the sums
in (4) and (5) are reduced by a half. For instance,
(5) is then given by

1 Fy/2
S(po) =—— Y., Pyosin (2mpodyo)
TPo fo=1

l iy NJ’Q-NJF

27°p} /=1 1= (Njp.N))?
T#f

E, ;

sin (7po.teLys.)
X ) LeNgou(te xNj) — L=~
; fe N0+ Llze X 1Ny TPo-treLse

Po=£poNyo.
(6)

The main advantage of (4) is that singularities occur
only if the reciprocal vector p is perpendicular to a
face and that for these directions (5) is to be applied,
the numerical evaluation of which follows the same
scheme. The formulae (4) and (5) can be used for
the numerical evaluation of the crystal shape ampli-
tude of any crystal polyhedron, if the crystal is
specified by the above mentioned quantities.

X Cos {zﬂpnN!ﬂ . §l(‘f‘ '},

3. Calculation procedure

In order to interpret the shape of transmission elec-
tron diffraction spots of small polyhedral crystals,
computer programs were written which enabled the
calculation and graphical representation of any
desired section and projection through the three-
dimensional crystal shape factor |S(p)|* of any crystal
polyhedron. The calculation procedure of |S(p)|*=
S(p)S*(p) (the asterisk denotes the complex conju-
gate expression) is carried out using the algebraic
expressions (5) and (6). The procedure applied is
advantageous, as the fixed set of quantities describing
the geometry of a given polyhedron comprises the
input data for all calculations of the shape factor of
this polyhedron for any orientation. The orientation
relationships are specified by transformation
matrices. In the programs the parameter p is replaced
by x = 2map, where a is chosen to be a suitable length.
For Platonic bodies, for instance, a is the length of
the edge of the circumscribed cube (¢f. Figs. 1, 3, 5,
7). Thus, the calculations are carried out within the
dimensionless boundaries of , (i =1, 2, 3). The calcu-
lated intensity distribution |S(p)|* of a projection for
a given polyhedron can then easily be assigned to
any crystal size of this kind of polyhedron. To display
the calculated results, a special half-tone overprinting
routine is used involving a logarithmic gray scale with
12 gray levels and a special contrast scaling factor,
yielding a contrast from white to black for direct
comparison with experimental diffraction patterns.
The programs were written in Fortran 77 and the
different versions were run on an SM4 computer

THE SHAPE OF ELECTRON DIFFRACTION SPOTS

based on the RSX system as well as on an ICL
computer
The algorithm and the programs were tested with
the use of the following general properties of the
shape amplitude:
(i)
max |S(p)|> = §%(0) = V2, (7)

where V is the volume of the crystal. In the programs
the intensity values are normalized by 1/ V*.
(i) The shape amplitude S(p) has all the symmetry
elements of the shape function s(£) of the crystal.
(iii)

S(p)=S*(—p). (8)
For the intensity this becomes
|S(p)I* =S(=p)I*. (9)

To illustrate the computational method, the cross
sections of the shape factor for a regular pentagonal
dodecahedron in (071) orientation, i.e. parallel to a
fivefold axis, are shown in Fig. 1. This example of
the calculated fine structure of a diffraction spot
caused by the crystal shape might be useful for inter-
pretation of diffraction patterns of small quasi-crys-
tals, where a pentagonal dodecahedral shape is poss-
ible. The input data necessary for the calculation of
S(p) describing the geometry of the pentagonal
dodecahedron are given in Table 1. The central cross
section of the shape factor clearly shows the tenfold

Fig. 1. Crystal shape factor map for a regular pentagonal
dodecahedron in (071) orientation; (a) orientation relationship
of pentagonal dodecahedron in circumscribed cube, (b) thick-
ness isolines of pentagonal dodecahedron in (071) orientation
in units of a, (¢) cross sections of shape factors |S|*; x,: £60,
X1 60, xy:0-30.
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Table 1. Data for calculating the shape amplitude of a pentagonal dodecahedron

f N; I I3 Iy ts
1 1
1 A(i+7k) =2 (ﬂ——j k) ;(i+rj——k) 5(—i+1j+—k> %(—Tf—*j'f'k)
T T T
. 1 . 1 . . 1 1Y A . 1 1 :
2 A(—i+ 1k) 2(2j) —'rl+ j k s\ —i-7—-k s\i—7+-k ol rit-j+k
T T T
1 1
3 A(7j + k) %(ﬂ—j-k) (——x+,—fk) 3(=2i) g(—-,—j+rk> %(-ri-fj+k)
T T T
. 1 1. 1 s 1. o
4 A(-7j+k) 3 —n—;]—k ;l Jj—7k 3(20) 3 ;!+]+'rk A —rit—j+k
L L of 1o YL of o 1
S A(7i+j) i(=2k) —1+‘rj——k s\ ——i+j+7k s\ —i—j+ 7k \i—1——k
T T T r
o . 1 YL 1. o . 1
6 A(7i—j) 3(2k) —1-7)+ k 3 —*x—]—'rk s\ —it+j—7k NitT+—k
T T
A=(r2+1)7"2 L=a/r*=a(2-1); V=a3Gr-2), =5(4—171)""2q%/47*~0-2510 a
d,=a/[2—\/5(~/5—1)]'”; r=(1+V5)/2
f E(Cf ) f(cﬂ) g(Cﬂ) §(Cf‘) f(cf’)
1 1
1 ;(2k) ;(;i—j+k) ~(ﬂ'—;j+k) —(‘ri+l]+k) §(£i+j+'rk>
2 (2K a(—l +j+ k) il( i+ ‘+k) "( i—~j+k “( Lisj+ k)
4 4 ‘rl I " 7'] 4 " 7'1 4 T' N
3 a(l i+j+ k) a('+ '+lk) 22 a( i+ '+Ik) “( Livjs k)
-1 ki = - - e - b
a\;'™/ a\'"777 a7 d\7TT a\ P
P T T SR N (mets) (i)
4 'rl 7T 4 'Y T 4 ) 4 Y T 4 ‘r‘ JrT
5 £ (2i) “( i+ k) "(‘+ j 1k> “(-+ +]k) “( i+ '+k)
2 i a L a _! a I a b
4 a\""7/ a\'"773 a\'"7ry a\"" 7/
6 (2i) “( ; ‘+k) ( ‘+lk) ( ‘+1k) "( i1k
g bad Wierien P HNau-lio
' 4 7'] ' T 4 Y T 4 ™ ‘rJ
Table 2. Correspondence between the x5, &, parameters, and the tilt angle €
Crystal L,~650A a~920A L,.,~700A a~990A Lo~750A a~530A
|x;] Z51=pal(A~1) ll(*) 125l =psl(A™Y) [el*) 1251 =1psl(A™Y) lel(*)
2 3-46x107* 0-04 3-22x107° 0-02 6-01x107° 0-04
5 8:65x107* 01 8-04x107* 0-06 1-50x 1073 0-1
10 1-73%x107° 0-2 1-61x107> 01 3-00x 107> 0-2
15 2:60x107° 03 2:41x107° 0-2 4-50x 1073 03
20 3-46x107° 0-4 3-22x1072 03 6-01x107° 0-5
30 519%107° 06 4-82x107° 04 9-01x107 0-7
Bragg condition g(200] g[220] g[220]
4] =4-47x 107 0-52 Ig,]=893x107? 0-74 ;] =1-02%x 1072 078

symmetry corresponding to the fivefold axis of s(§).
The off-centre cross sections obviously exhibit the
loss of the centrosymmetry which leads to the fivefold
symmetrical cross section. The different x; values can
be assigned to the corresponding {; components of
the actual deviation parameter { of a diffraction spot
from the Ewald sphere for any given size of the
pentagonal dodecahedron.

4. Applications

The structure and habit of small gold crystals (a,=
4.07 A) and of palladlum particles (a,=3-809 A)
were investigated by various transmission electron

microscope imaging techniques and by transmission
electron diffraction (Hofmeister, Haefke & Krohn,
1982). The metal particles grown by vapour deposi-
tion onto ionic crystal substrates (Au/AgBr; Pd/KI)
exhibit a clearly distinguishable polyhedral shape of
mainly octahedral habit. For palladium particles a
tetrahedral shape was observed, too. By illuminating
the specimens by a highly collimated electron beam
very sharp difiraction patterns of the particles in
various orientations could be obtained. The shape of
the spots is characteristic of the particle orientation.
The fine structure of the diffraction spots was com-
pared with calculated maps presenting both central
and off-centre cross sections through the shape factor
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of the crystal shape factor seems also to be appropri-
ate for the analysis of the fine structure of the diffrac-
tion spots of multiply twinned particles. Calculations
to explain the results of experimental investigations
of multiply twinned gold particles (Hofmeister, 1984)
are in preparation.

The authors are grateful to Professor A. Delong
and Professor V. Schmidt for continuing interest and
suggestions promoting this cooperative work. They
are especially indebted to Dr R. Hillebrand for per-
mission to use his overprinting subroutine as part of
our computer programs. Thanks are also due to Mrs
Kolafikova for her assistance in preparing the type-
script.
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Abstract

X-ray scattering measurements have been made in
situ on highly oriented pyrolytic graphite intercalated
with FeCl, to stage 4 in a sealed glass tube at 620 K.
It has been found that the FeCl; is in a two-
dimensional liquid state at this temperature and that
the stacking of the sets of ordered graphite layers
(ABAB) that bound the intercalant is nearly random.
Through a novel modeling of L scans for 10.L, 11.L,
20.L,21.L,30.Land 22.L, agood fithas been achieved
by using 60% of a preferred (A-A) stacking of sets
with a broad lateral distribution about the ordered
position. The remaining 40% of the sets are stacked
with complete translational randomness, without
regard to the normal graphite crystaliography. This
sliding randomness remains compatible with
Daumas-Herold domain formation.

0108-7673/88/060897-08$03.00

I. Introduction

A variety of structural behavior appears in graphite
intercalation compounds (GIC’s) depending criti-
cally on the molecular nature of the species interca-
lated within the graphite host. With the acceptor
compounds, there are often rather complex sequences
of ordering reactions involving transitions from liquid
to incommensurate solid to commensurate solid
{Dresselhaus & Dresselhaus, 1981; Solin, 1982;
Moret, 1986). In the case of FeCl;, beginning with
the early electron diffraction study by Cowley & Ibers
(1956), there has been extensive structural charac-
terization, mainly by Metz and co-workers (Hohlwein
& Metz, 1974; Metz & Schulze, 1975; Metz &
Hohlwein, 1975). A major feature of these photo-
graphic studies, common to all the GIC’s, has been
the occurrence of well defined stages in which, for
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